
Effects of Averaging to Reject Unwanted Signals in
Digital Sampling Oscilloscopes

Charles Bishop
Catherine Kung

Systems Test Group
Teradyne, Inc.

North Reading, MA USA

Abstract— DSOs (Digital Sampling Oscilloscopes) generally allow
the use of averaging to increase vertical resolution and lower
uncorrelated noise. While averaging is a useful tool, it is
important to remember that it is a type of filtering. Applying
averaging successfully is easier if the user understands the
characteristics of the filters being applied.

I. INTRODUCTION

A Digital Sampling Oscilloscope (DSO) is used in
Automatic Test Equipment to look at a waveform at discrete
sampling instances, so that the waveform can be displayed for
visual interpretation or digitized for post-processing analysis.
Very often a DSO is used in combination with other test
equipment, or integrated into a larger test system, where
unwanted signals might couple into the waveform under test.
Users of a DSO often want to improve the quality of their
measurement and one approach for doing so is by averaging.

There are two general use-cases for averaging in a DSO.
The first, successive sample averaging, takes a single
acquisition and averages between its samples. The second,
successive capture averaging, combines the corresponding
samples of multiple captures to create a single capture.

II. THEORY AND BENEFITS OF COMMON TYPES OF
AVERAGING

A. Successive Sample Averaging
Successive sample averaging is also called boxcar filtering

or moving average filtering. In an implementation of this type
of averaging each output sample represents the average value
of M consecutive input samples. Figure 1 illustrates the concept
for a 3-sample average. In this example the input and output
sample rates are equal. This type of averaging removes noise
by decreasing a DSO’s bandwidth. It applies an LPF function
with a 3dB point approximated by

� ������s/M� �	
�

where M is the number of samples to be averaged, and s is the
sample rate in samples per second. This type of filter will have
very sharp nulls at frequencies corresponding to signals whose
periods are integer sub-multiples of M/s. The possible noise

reduction is roughly proportional to the square root of the
number of points, so a 25 point filter would reduce high-
frequency noise amplitude by a factor of 5. In DSOs this type
of averaging is often used to implement a selectable bandwidth
function.

Figure 1. Successive Sample Averaging

Successive sample averaging may also be employed as part
of a sample decimation scheme. Sample decimation is
employed to improve vertical resolution at lower sample rates.
Rather than sample at the user-selected rate, a DSO may
sample at M times that rate, and then average together M input
samples to produce each output sample at the lower rate.

Figure 2. Decimation Based on Successive Sample Averaging

Input Samples

Output Samples ……

…

N N+1 N+2

N-2 N-1 N N+1

1/3

Input Samples

Output Samples

N+2

N-2 N-1

1/31/3

……

… …

978-1-4244-7961-0/10/$26.00 ©2010 IEEE

In this case the resolution improvement, for small M, is
proportional to M. As rule of thumb, 1 bit of resolution
improvement may be achieved for each factor of four in M.
Averaging by 16 would therefore improve resolution by about
2 bits. In general, too, the user should not expect resolution
improvement beyond 4-6 additional bits. Note also that the
improvement depends on a dynamic signal. Resolution will
always be improved on those portions of a signal that slew
through multiple code counts between samples, but steady-state
signals will see improvement only if there is noise present with
amplitude greater than 1 or 2 ADC LSBs. Fortunately, for real-
world signals this is almost always the case.

In figure 3 a half-cycle of a sine wave is shown digitized to
4-bit resolution. Quantization is evident on all parts of the
waveform. In figure 4 the same waveform has been decimated
and averaged by a factor of 16. Quantization is almost
completely removed from the fastest-slewing portions of the
waveform, but is still evident at the peak, where the slew rate is
least.

Improvement in resolution implies but does not guarantee
improvement in accuracy. Inaccuracies due to noise and
quantization can be averaged away, but errors arising from
measure path non-linearity, converter INL, or long-period
errors such as thermal drift will remain. When capturing
signals in a noisy environment averaging over thousands of
samples may be required, but the result will not have a greater
basic accuracy improvement.

Figure 3. 1024 Samples Quantized at 4 bits

Figure 4. Decimation by 16

Decimation with averaging has another benefit in that it
reduces aliasing. By over-sampling at M times the requested
rate, the Nyquist frequency is also raised by a factor of M.

B. Successive Capture Averaging
Most DSOs can employ averaging in a second way that

takes advantage of the repetitive nature of many signals under
test. With successive capture averaging, M complete
waveforms are digitized, and then corresponding samples, one
from each set, are averaged together to produce each sample of
the output waveform. This technique rejects signals that are
not correlated to the trigger without band-limiting the
waveform.

Figure 5. Successive Capture Averaging

While successive capture averaging does not decrease the
bandwidth of the DSO, it does require that M captures be
completed prior to the first valid output. This can have a
pronounced impact on throughput if too large a value is used
for M.

The latency associated with successive-capture averaging
can be most obvious when the result of a continuous series of
captures is being streamed to a display. This is the typical use-
case for a DSO in non-ATE applications. An implementation
that only updated the display every M captures would produce
a very intermittent display. For this reason most DSOs
incorporate some sort of continuous averaging algorithm for
use with the display. This can take the form of arithmetic
averaging but for reasons of calculation efficiency and display
response an exponential algorithm is often used instead.

III. EXAMPLES

The effects of averaging on a signal can be viewed in either
the time domain or the frequency domain. For examining the
time domain, a unit step is a very useful test signal. In the
frequency domain it is helpful to look at an FFT (Fast Fourier
Transform) of the impulse response.

A. Frequency Response of Successive Sample Averaging
Figure 6 compares the frequency response of 64-point and

256-point successive sample averages. In each case the

0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000 1200

0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000 1200

impulse response has been calculated over 4096 time domain
samples. An FFT of the response has then been plotted. The
sample frequency is assumed to be 1GS/s. Per equation (1) we
would expect the 3dB points to be 6.76MHz and 1.69MHz
respectively, and they are.

-45

-42

-39

-36

-33

-30

-27

-24

-21

-18

-15

-12

-9

-6

-3

0

0.1 1 10 100 1000

Frequency

dB

64 Point
256 point

Figure 6. Filter Bandwidth of Successive Sample Averaging

Figure 6 shows the dramatic nulls that exist in the stop-
band of averaging filters. These null points are at the
frequency s/M and its harmonics. The figure also shows that at
each point in the stop-band the 256-point average has about
12dB greater attenuation than the 64-point.

Choosing the width of a successive sample average
involves trade-offs. In the example above, averaging across
256 points results in about 12dB greater noise suppression than
averaging across 64 points, but it also reduces the capture
bandwidth by a factor of four.

B. Successive Capture Averaging
Successive capture averaging doesn’t affect the bandwidth

of a DSO, but it does affect noise amplitude and we’d like
some way of evaluating the relative effectiveness of different
amounts of averaging. One good approach is to view the noise
as an entirely random process and then look at the effect of
averaging a random series. In figure 7 a 10V signal with +/-1V
of noise is subjected to repeated sampling and averaging. This
would represent the variability of a single point within a larger
capture. Averaging across 500 captures is sufficient to reduce
the noise to 50mV, but after that the noise does not converge as
quickly to 0V. You might suspect that these averages were
done with single-precision floating point, and that the
accumulated rounding error across such a large sample set is
dominating the total error. In fact, the reason is that the
random number generator used in this analysis appears not to
be completely random. It uses a seed value perhaps borrowed
from the processor’s real time clock. The result is that there
are long-period biases in the random function that are very hard
to average out. I’ve kept the error in the example because it
illustrates an important fact; noise is very broadband. Some
noise will always fall within the pass-band of an averaging
function, no matter how many points are used.

9.9
9.92
9.94
9.96
9.98

10
10.02
10.04
10.06
10.08
10.1

0 500 1000 1500 2000

Figure 7. Convergence of Successive Capture Averaging

Figure 8 shows a closer view of the error. Given the long-
period content in this pseudo-random noise, there’s little point
in averaging more than about a thousand captures.

9.98

9.985

9.99

9.995

10

10.005

10.01

10.015

10.02

0 500 1000 1500 2000

Figure 8. Convergence of Successive Capture Averaging

Another way of looking at successive capture averaging is
in terms of impulse response. In this case we think of the noise
in terms of a one-time interfering signal. Figure 9 shows the
decaying response of a 1V impulse after repeated averaging.
At 1000 averages the remaining amplitude is 1mV.

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

0 500 1000 1500 2000

Figure 9. Impulse Response of Successive Capture Averaging

It’s important to remember that successive capture
averaging only attenuates signals that are un-correlated to the
trigger.

It’s also important to keep in mind a particular case; signals
which trigger alternately on both the rising and falling edge. If
too little trigger hysteresis is employed when capturing a noisy
signal the result can be a set of captures where the signal of
interest has two distinct and opposite phases. The result of
averaging these captures will be to attenuate the desired signal,
and in the extreme case to cancel it completely.

C. Continuous Successive Capture Averaging
One important use of DSOs is to observe changing signals

interactively. In this case the instrument performs one capture
after another and continuously sends the result to a display.
This can present challenges to the design of a successive
capture averaging algorithm. First of all, there is the need to
maintain high throughput. The display should update quickly
enough that the user can perceive dynamic changes in the
signal and not be distracted by the update process itself.
Secondly there is the need to conserve hardware resources. All
averaging algorithms to this point could be implemented by
capturing into an accumulator, and then performing a division
to get a result. For continuously updating a display we would
like to update the display after each capture, rather than to wait
until we’ve accumulated M capture sets. This could mean that
we need to store M complete captures in a FIFO array.

Alternatively, we can use an exponential averaging function
to approximate arithmetic averaging. With this algorithm we
can use a single accumulator array and we still get a valid result
after every capture. With exponential averaging we
accumulate M samples just as with arithmetic averaging, but
each time we add a new sample to the accumulator we subtract
the previous average value and then divide by M to obtain a
new average value.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

50 100 150 200 250 300

Captures

Step
Exp16
Box48

Figure 10. Exponential Averaging

Figure 10 compares the time response, in captures, of a 48-
capture arithmetic average with 16-capture exponential
average. The real-world case is where the display is
responding to a sudden change in signal. The arithmetic

average reaches the final value slightly more quickly, but the
exponential average has a quicker initial response and a more
“natural” settling characteristic. The result is a display that is
seen by the user as more responsive. The figure illustrates
another advantage of the exponential algorithm. It requires
fewer captures to achieve similar results. In terms of rise time
or 3dB point, an exponential average is comparable to an
arithmetic average of three times the number of points. In
terms of stop-band attenuation it requires half the number of
points.

D. Teradyne’s Ai-760 DSO
An example of an instrument that employs many of these

averaging techniques is Teradyne’s Ai-760 Digital Sampling
Oscilloscope. In addition to its other features this DSO has the
ability to perform post-processing of DSO captures, including
application of the FFT (Fast Fourier Transform) using the
Spectrum function in its Measurement Library.

1) Successive Sample Averaging With Decimation
The instrument has a High-Resolution mode where the

instrument samples at an integer multiple of the user’s
requested sample rate. It then averages together the extra
samples to improve accuracy, lower noise, and improve anti-
aliasing. This averaging is done in firmware in real time, so
there is no throughput penalty.

2) Successive Capture Averaging.
The instrument allows the user to average together multiple

captures. This feature is supported, not only for real time
sampling mode, but also for equivalent time sampling, where
dithering of the timebase is used to fill in the gaps between
samples. Special attention has been paid to mathematical
precision, so that averages across several thousand captures can
be performed without degradation by accumulated errors.

3) Continuous Successive Capture Averaging
The instrument supports a GUI display and can update it in

real time, even when performing successive capture averaging.
The instrument is designed to employ both arithmetic and
exponential averaging in support of the GUI.

IV. SUMMARY

DSOs employ averaging in a variety of ways. Averaging
suppresses noise, increases accuracy and resolution, and when
used in conjunction with decimation improves anti-aliasing
performance.

Averaging across successive samples can provide effective
noise reduction and resolution improvement, particularly where
a low-pass characteristic is desired.

Averaging across successive captures is a powerful tool in
that it suppresses noise while preserving bandwidth.

However it’s applied, averaging always presents the user
with a case of diminishing returns. Some amount of averaging
improves a signal, but more is not always better. Averaging
can’t improve the resolution of an instrument by more than a
few bits, and too much averaging can impact test times. An
understanding of how averaging is used in a DSO can help the
user to know when it will produce benefits, and when it won’t.

