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Abstract— DSOs (Digital Sampling Oscilloscopes) generally allow 
the use of averaging to increase vertical resolution and lower 
uncorrelated noise.  While averaging is a useful tool, it is 
important to remember that it is a type of filtering.  Applying 
averaging successfully is easier if the user understands the 
characteristics of the filters being applied.   

I. INTRODUCTION

A Digital Sampling Oscilloscope (DSO) is used in 
Automatic Test Equipment to look at a waveform at discrete 
sampling instances, so that the waveform can be displayed for 
visual interpretation or digitized for post-processing analysis.  
Very often a DSO is used in combination with other test 
equipment, or integrated into a larger test system, where 
unwanted signals might couple into the waveform under test.  
Users of a DSO often want to improve the quality of their 
measurement and one approach for doing so is by averaging. 

There are two general use-cases for averaging in a DSO.  
The first, successive sample averaging, takes a single 
acquisition and averages between its samples.  The second, 
successive capture averaging, combines the corresponding 
samples of multiple captures to create a single capture. 

II. THEORY AND BENEFITS OF COMMON TYPES OF 
AVERAGING

A. Successive Sample Averaging 
Successive sample averaging is also called boxcar filtering 

or moving average filtering.  In an implementation of this type 
of averaging each output sample represents the average value 
of M consecutive input samples. Figure 1 illustrates the concept 
for a 3-sample average. In this example the input and output 
sample rates are equal.  This type of averaging removes noise 
by decreasing a DSO’s bandwidth.  It applies an LPF function 
with a 3dB point approximated by 
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where M is the number of samples to be averaged, and s is the 
sample rate in samples per second.  This type of filter will have 
very sharp nulls at frequencies corresponding to signals whose 
periods are integer sub-multiples of M/s.  The possible noise 

reduction is roughly proportional to the square root of the 
number of points, so a 25 point filter would reduce high-
frequency noise amplitude by a factor of 5.  In DSOs this type 
of averaging is often used to implement a selectable bandwidth 
function. 

Figure 1. Successive Sample Averaging 

Successive sample averaging may also be employed as part 
of a sample decimation scheme.  Sample decimation is 
employed to improve vertical resolution at lower sample rates.  
Rather than sample at the user-selected rate, a DSO may 
sample at M times that rate, and then average together M input 
samples to produce each output sample at the lower rate.   

Figure 2. Decimation Based on Successive Sample Averaging 
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In this case the resolution improvement, for small M, is 
proportional to M.  As rule of thumb, 1 bit of resolution 
improvement may be achieved for each factor of four in M.  
Averaging by 16 would therefore improve resolution by about 
2 bits.  In general, too, the user should not expect resolution 
improvement beyond 4-6 additional bits.  Note also that the 
improvement depends on a dynamic signal.  Resolution will 
always be improved on those portions of a signal that slew 
through multiple code counts between samples, but steady-state 
signals will see improvement only if there is noise present with 
amplitude greater than 1 or 2 ADC LSBs.  Fortunately, for real-
world signals this is almost always the case.   

In figure 3 a half-cycle of a sine wave is shown digitized to 
4-bit resolution.  Quantization is evident on all parts of the 
waveform.  In figure 4 the same waveform has been decimated 
and averaged by a factor of 16.  Quantization is almost 
completely removed from the fastest-slewing portions of the 
waveform, but is still evident at the peak, where the slew rate is 
least. 

Improvement in resolution implies but does not guarantee 
improvement in accuracy.  Inaccuracies due to noise and 
quantization can be averaged away, but errors arising from 
measure path non-linearity, converter INL, or long-period 
errors such as thermal drift will remain.  When capturing 
signals in a noisy environment averaging over thousands of 
samples may be required, but the result will not have a greater 
basic accuracy improvement. 

Figure 3. 1024 Samples Quantized at 4 bits 

Figure 4. Decimation by 16 

Decimation with averaging has another benefit in that it 
reduces aliasing.   By over-sampling at M times the requested 
rate, the Nyquist frequency is also raised by a factor of M.   

B. Successive Capture Averaging 
Most DSOs can employ averaging in a second way that 

takes advantage of the repetitive nature of many signals under 
test.  With successive capture averaging, M complete 
waveforms are digitized, and then corresponding samples, one 
from each set, are averaged together to produce each sample of 
the output waveform.  This technique rejects signals that are 
not correlated to the trigger without band-limiting the 
waveform.   

Figure 5. Successive Capture Averaging 

While successive capture averaging does not decrease the 
bandwidth of the DSO, it does require that M captures be 
completed prior to the first valid output.  This can have a 
pronounced impact on throughput if too large a value is used 
for M. 

The latency associated with successive-capture averaging 
can be most obvious when the result of a continuous series of 
captures is being streamed to a display.  This is the typical use-
case for a DSO in non-ATE applications.  An implementation 
that only updated the display every M captures would produce 
a very intermittent display.  For this reason most DSOs 
incorporate some sort of continuous averaging algorithm for 
use with the display.  This can take the form of arithmetic 
averaging but for reasons of calculation efficiency and display 
response an exponential algorithm is often used instead. 

III. EXAMPLES

The effects of averaging on a signal can be viewed in either 
the time domain or the frequency domain.  For examining the 
time domain, a unit step is a very useful test signal.  In the 
frequency domain it is helpful to look at an FFT (Fast Fourier 
Transform) of the impulse response. 

A. Frequency Response of Successive Sample Averaging 
Figure 6 compares the frequency response of 64-point and 

256-point successive sample averages.  In each case the 
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impulse response has been calculated over 4096 time domain 
samples.  An FFT of the response has then been plotted.  The 
sample frequency is assumed to be 1GS/s.  Per equation (1) we 
would expect the 3dB points to be 6.76MHz and 1.69MHz 
respectively, and they are. 
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Figure 6. Filter Bandwidth of Successive Sample Averaging 

Figure 6 shows the dramatic nulls that exist in the stop-
band of averaging filters.  These null points are at the 
frequency s/M and its harmonics.  The figure also shows that at 
each point in the stop-band the 256-point average has about 
12dB greater attenuation than the 64-point.  

Choosing the width of a successive sample average 
involves trade-offs.  In the example above, averaging across 
256 points results in about 12dB greater noise suppression than 
averaging across 64 points, but it also reduces the capture 
bandwidth by a factor of four. 

B. Successive Capture Averaging 
Successive capture averaging doesn’t affect the bandwidth 

of a DSO, but it does affect noise amplitude and we’d like 
some way of evaluating the relative effectiveness of different 
amounts of averaging.  One good approach is to view the noise 
as an entirely random process and then look at the effect of 
averaging a random series.  In figure 7 a 10V signal with +/-1V 
of noise is subjected to repeated sampling and averaging.  This 
would represent the variability of a single point within a larger 
capture.  Averaging across 500 captures is sufficient to reduce 
the noise to 50mV, but after that the noise does not converge as 
quickly to 0V.  You might suspect that these averages were 
done with single-precision floating point, and that the 
accumulated rounding error across such a large sample set is 
dominating the total error.  In fact, the reason is that the 
random number generator used in this analysis appears not to 
be completely random.  It uses a seed value perhaps borrowed 
from the processor’s real time clock.  The result is that there 
are long-period biases in the random function that are very hard 
to average out.  I’ve kept the error in the example because it 
illustrates an important fact; noise is very broadband.  Some 
noise will always fall within the pass-band of an averaging 
function, no matter how many points are used. 
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Figure 7. Convergence of Successive Capture Averaging 

Figure 8 shows a closer view of the error.  Given the long-
period content in this pseudo-random noise, there’s little point 
in averaging more than about a thousand captures. 
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Figure 8. Convergence of Successive Capture Averaging 

Another way of looking at successive capture averaging is 
in terms of impulse response.  In this case we think of the noise 
in terms of a one-time interfering signal.  Figure 9 shows the 
decaying response of a 1V impulse after repeated averaging.  
At 1000 averages the remaining amplitude is 1mV. 
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Figure 9. Impulse Response of Successive Capture Averaging 



It’s important to remember that successive capture 
averaging only attenuates signals that are un-correlated to the 
trigger.   

It’s also important to keep in mind a particular case; signals 
which trigger alternately on both the rising and falling edge.  If 
too little trigger hysteresis is employed when capturing a noisy 
signal the result can be a set of captures where the signal of 
interest has two distinct and opposite phases.  The result of 
averaging these captures will be to attenuate the desired signal, 
and in the extreme case to cancel it completely. 

C. Continuous Successive Capture Averaging 
One important use of DSOs is to observe changing signals 

interactively.  In this case the instrument performs one capture 
after another and continuously sends the result to a display.  
This can present challenges to the design of a successive 
capture averaging algorithm.  First of all, there is the need to 
maintain high throughput.  The display should update quickly 
enough that the user can perceive dynamic changes in the 
signal and not be distracted by the update process itself.  
Secondly there is the need to conserve hardware resources.  All 
averaging algorithms to this point could be implemented by 
capturing into an accumulator, and then performing a division 
to get a result.  For continuously updating a display we would 
like to update the display after each capture, rather than to wait 
until we’ve accumulated M capture sets.  This could mean that 
we need to store M complete captures in a FIFO array. 

Alternatively, we can use an exponential averaging function 
to approximate arithmetic averaging.  With this algorithm we 
can use a single accumulator array and we still get a valid result 
after every capture.  With exponential averaging we 
accumulate M samples just as with arithmetic averaging, but 
each time we add a new sample to the accumulator we subtract 
the previous average value and then divide by M to obtain a 
new average value.   
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Figure 10. Exponential Averaging 

Figure 10 compares the time response, in captures, of a 48-
capture arithmetic average with 16-capture exponential 
average.  The real-world case is where the display is 
responding to a sudden change in signal.  The arithmetic 

average reaches the final value slightly more quickly, but the 
exponential average has a quicker initial response and a more 
“natural” settling characteristic.  The result is a display that is 
seen by the user as more responsive.  The figure illustrates 
another advantage of the exponential algorithm.  It requires 
fewer captures to achieve similar results.  In terms of rise time 
or 3dB point, an exponential average is comparable to an 
arithmetic average of three times the number of points.  In 
terms of stop-band attenuation it requires half the number of 
points. 

D. Teradyne’s Ai-760 DSO 
An example of an instrument that employs many of these 

averaging techniques is Teradyne’s Ai-760 Digital Sampling 
Oscilloscope. In addition to its other features this DSO has the 
ability to perform post-processing of DSO captures, including 
application of the FFT (Fast Fourier Transform) using the 
Spectrum function in its Measurement Library.   

1) Successive Sample Averaging With Decimation 
The instrument has a High-Resolution mode where the 

instrument samples at an integer multiple of the user’s 
requested sample rate.  It then averages together the extra 
samples to improve accuracy, lower noise, and improve anti-
aliasing.  This averaging is done in firmware in real time, so 
there is no throughput penalty. 

2) Successive Capture Averaging. 
The instrument allows the user to average together multiple 

captures.  This feature is supported, not only for real time 
sampling mode, but also for equivalent time sampling, where 
dithering of the timebase is used to fill in the gaps between 
samples.  Special attention has been paid to mathematical 
precision, so that averages across several thousand captures can 
be performed without degradation by accumulated errors. 

3) Continuous Successive Capture Averaging 
The instrument supports a GUI display and can update it in 

real time, even when performing successive capture averaging.  
The instrument is designed to employ both arithmetic and 
exponential averaging in support of the GUI. 

IV. SUMMARY

DSOs employ averaging in a variety of ways.  Averaging 
suppresses noise, increases accuracy and resolution, and when 
used in conjunction with decimation improves anti-aliasing 
performance. 

Averaging across successive samples can provide effective 
noise reduction and resolution improvement, particularly where 
a low-pass characteristic is desired. 

Averaging across successive captures is a powerful tool in 
that it suppresses noise while preserving bandwidth. 

However it’s applied, averaging always presents the user 
with a case of diminishing returns.  Some amount of averaging 
improves a signal, but more is not always better.  Averaging 
can’t improve the resolution of an instrument by more than a 
few bits, and too much averaging can impact test times.  An 
understanding of how averaging is used in a DSO can help the 
user to know when it will produce benefits, and when it won’t. 


